
ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
Vol. 2, Issue 3, March  2015 

 

Copyright to IARJSET                                   DOI  10.17148/IARJSET.2015.2316                                                   68 

A  Study on Performance Analysis of Different 

Parallel algorithms Implemented for Geometric 

Problems 
  

Kalyan Kumar Jena 

Assistant Professor, Department of CSEA, IGIT, Sarang , Odisha , India 

  

Abstract: There are different techniques to make parallel programs. In parallel programming, independent pieces of 

tasks that may run in parallel. The objective of parallel algorithm design is to develop parallel computational methods 

that run very fast with as few processors as possible. A proper implementation expected to give a better speedup in dual 

core machine and in a quad core machine. In this paper, the implementation of different parallel algorithms such as 

Naive Algorithm , Brute Force Algorithm , Graham Scan Algorithm on geometric problems is presented. 
 

Keywords: Parallel Algorithms, Dual Core and Quad Core Machines, Naive Algorithm , Graham Scan Algorithm , 

Brute Force Algorithm , Geometric Problems. 

 

I. INTRODUCTION 

A parallel algorithm is the just opposite of serial algorithm. 

Parallel algorithms involve sub-computations whose 
amount of work is not known in advance, and hence the 

work can only be distributed at execution time. 

Computational geometry is the study of algorithms which 

can be stated in terms of geometry [1].  

 

Some purely geometrical problems arise out of the study 

of computational geometric algorithms, and such problems 

are also considered to be part of computational geometry 

[2]. Computational geometry focuses heavily on 

computational complexity since the algorithms are meant 

to be used on very large datasets containing tens or 
hundreds of millions of points.  

 

For large data sets, the difference between O(n2) and O(n 

log n) can be the difference between days and seconds of 

computation. Some fundamental problems of this type are 

Convex hull , Line segment intersection , Delaunay 

triangulation, Voronoi diagram, Closest pair of points , 

Euclidean shortest path, Polygon triangulation and Mesh 

generation. 

II. PARALLEL NAIVE ALGORITHM 

Input - > x[i] , y[i] as the x and y- coordinates of point i 

z[i] = (x[i])2  + (y[i]) 2 
  

for i=0 to n-2 

      for j=i+1 to n 

            for k=i+1 to  

                  if(j!=k) 

                       zn=(x[j]-x[i])*(y[k]-y[i])-(x[k]-x[i])*(y[j]-

y[i]); 

                       if(flag=(zn1<0) 

                       xn=(y[j]-y[i])*(z[k]-z[i])-(y[k]-y[i])*(z[j]-

z[i]); 

                       

 

 yn=(x[k]-x[i])*(z[j]-z[i])-(x[j]-x[i])*(z[k]-z[i]); 
                       for m=0 to n 

                          flag=flag&&((x[m]-x[i])*xn+(y[m]-

y[i])*yn+(z[m]-z[i])*zn<=0); 

                        if (flag) 

                        printplot(i,j,k); 

                 end if 

              end for 

         end for 

  end for 

In two dimensions, one way to detect if point D lies in the 

circumcircle of A, B, C is to evaluate the required 

determinant. 

When A, B and C are sorted in a counterclockwise order, 

this determinant is positive if and only if D lies inside the 

circumcircle.The approach followed to parallelize the 

algorithm involves parallelizing the outer for loop. We 

have to keep in mind that all the variables involved except 

the point sets should be private i.e. each processor should 
have its own copy of the variable(s),this helps in 

eliminating race conditions and achieving a good speedup. 

III.  PARALLEL GRAHAM SCAN 

ALGORITHM 

Sort all points in S based on their position on the X axis 

using parallel quicksort 

Designate point left as the leftmost point 

Designate point right as the rightmost point 

Remove left and right from S 

While there are still points in S 
remove Point from S 

if Point is above the line from left to right 

add Point to the end of array upper 

else 

add Point to the end of array lower 



ISSN (Online) 2393-8021 

ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
Vol. 2, Issue 3, March  2015 

 

Copyright to IARJSET                                   DOI  10.17148/IARJSET.2015.2316                                                   69 

 

Construction of  the lower hull on one processor: 

 

Add left to lower_hull 

While lower is not empty 

add lower[0] to the end of lower_hull 
remove lower[0] from lower 

while size(lower_hull >= 3 and the last 3 points 

lower_hull are not convex 

remove the next to last element from lower_hull 

 

 Construction of  the upper hull on another processor: 

 

Add left to upper_hull 

While upper is not empty 

  add upper[0] to the end of upper_hull 

  remove upper[0] from upper 
  while size(upper_hull >= 3 and the last 3 points 

upper_hull are not convex 

    remove the next to last element from upper_hull 

Merge upper_hull and lower_hull to form hull 

return hull 

We will implement this algorithm for Convex 

Hull .Graham Scan, as it is called, works by picking the 

leftmost point p, i.e. the one with the minimum p.x ,  then 

scanning the rest of the points in counterclockwise order 

with respect to p.  As this scanning is done, the points that 

should remain on the convex hull are kept, and the rest are 
discarded leaving only the points in the convex hull at the 

end. 

IV.  PARALLEL BRUTE FORCE ALGORITHM 

  for each p in P: 

  for each q in P: 

  dis=dist(p,q)  

  if p ≠ q and dis < minDist: 

   minDist = dist(p, q) 

   closestPair = (p, q) 

return closestPair 

The closest pair of points can be computed in O(n2) time 
by performing a brute-force search. To do that, one could 

compute the distances between all the n(n − 1) / 2 pairs of 

points, then pick the pair with the smallest distance. The 

parallel approach involves parallelizing the outer for loop. 

The variable “dis” has to be kept private since each 

processor calculates the distance independently and hence 

should keep a copy of the variable itself to avoid race 

conditions. The “minDist” variable should be kept shared 

as both the processors should update it. 

V. PERFORMANCE ANALYSIS  

SL. 

NO 

NO. OF 

POINTS 

TIME 

TAKEN(Serial) 

TIME 

TAKEN(Parallel) 

SPEED 

UP 

1 300 4.307 2.970 1.449 

2 350 7.790 5.401 1.442 

3 400 13.846 8.806 1.572 

4 450 20.785 13.775 1.508 

5 500 31.387 21.711 1.445 

Table 1: Performance Analysis Table  of  Parallel Naive 

Algorithm 

 

SL.NO

. 

NO. OF 

POINS 

TIME 

TAKEN(S

erial) 

TIME 

TAKEN(

Parallel) 

SPEED 

UP 

1 200000 0.075 0.048 1.547 

2 400000 0.158 0.103 1.538 

3 600000 0.332 0.217 1.529 

4 800000 0.452 0.286 1.579 

5 1000000 0.605 0.388 1.556 

Table 2: Performance  Analysis Table of Parallel Graham Scan 

Algorithm 

SL. 

NO 

NO. OF 

POINTS 

TIME 

TAKEN

(Serial) 

TIME 

TAKEN(

Parallel) 

SPEED 

UP 

1 8000 0.469 0.314 1.493 

2 12000 1.053 0.674 1.561 

3 16000 1.863 1.173 1.587 

4 20000 2.911 1.823 1.596 

5 24000 4.192 2.631 1.593 

Table 3: Performance  Analysis Table of Parallel Brute Force Algorithm 

VI.  CONCLUSION 

In this paper, we have discussed the implementation of 

different parallel algorithms on geometric problems and 

the performance tables related to different parallel 

algorithms are presented. A proper implementation helps 

in speed up the operation. This shows that parallel 

programming is better approach to solve any problem 

efficiently as compared with serial algorithms.  
 

REFERENCES 
[1]  Dedu,Vialle and Timsit, “Comparison of OpenMP and classical 

multithreading parallelization for regular and irregular algorithms,” 

In Fouchal, Software Engineering Applied to Networking 

Parallel/Distributed Computing (SNPD), Association for Computer 

and Information Science ,53–60,2000. 

[2]  Nikolopoulos, D.S.Polychronopoulos and C.D.Ayguade, “Scaling 

irregular parallel codes with minimal programming effort. In 

Supercomputing,” Proceedings of the 2001 ACM/IEEE Conference 

on Supercomputing (CDROM), ACM Press ,2001. 

 [3]  S¨uß and  Leopold, “ Common mistakes in OpenMP and how to avoid them,” In 

Proceedings of the International Workshop on OpenMP - IWOMP’06,2006 
[4]    Bull, J.M. and O’Neill, “A micro benchmark suite for OpenMP 2.0,” 

SIGARCH Compute. Archit. News 29(5) ,41–48,2001 

[5]    F.P. Preparata and S. Hong, “Convex hulls of finite sets of points in 

two and three dimensions,” Comm. ACM, Vol. 20,pp. 87-93,1977. 

[6]  H. Freeman and R. Shapira, “Determining the minimum-area encasing rectangle for an 

arbitrary closed curve,” Comm. A.C.M., Vol. 18,pp. 409-413,July 1975. 

[7]  T. Lozano-Perez, “An algorithm for planning collision-free paths among 

polyhedral obstacles,” Comm. ACM, Vol. 22, pp. 560-570,1979. 

[8]   L. O. Chua and L. Yang , "Cellular neural networks: Theory,"  IEEE 

Trans. Circuits Syst.,  vol. 35,  pp.1257 -1272 ,1988.  

[9]  L. O. Chua and L. Yang, "Cellular neural networks: Applications,"  IEEE 

Trans. Circuits Syst.,  vol. 35,  pp.1273 -1290,1988. 

[10] T. Roska and L. O. Chua ,"The CNN universal machine Part 2: Programmability and 

applications,"  Proc. IEEE CNNA-92,  pp.181 -190 1992 . 

[11]  L.J. Guibas and F.F. Yao, “On translating a set of rectangles,”  Proc. 

of the Twelfth Annual ACM Symposium on Theory of Computing, 

Los Angeles, pp. 154-160,April 1980.  

[12]  J. O’Rourke, “An on-line algorithm for fitting straight lines between 

data ranges,” Comm. ACM, Vol. 24, pp. 574-578, September 1981.  

 [13] H. M. Alnuweiri and V. K. P. Kumar ,"Efficient image 

computations on VLSI architectures with reduced hardware," Proc. IEEE 1987 

Workshop Comput. Architecture, Pattern Anal. Mach. Intell., pp.192 -199,1987.  

[14]  P. J. Burt and G. S. van der Wal, "Iconic image analysis with the 

pyramid vision machine (PVM)," Proc. IEEE 1987 Workshop 

Pattern Anal. Mach. Intell.,  pp.137 -144,1987. 

[15]  Î’. Chazelle, "Computational geometry on a systolic chip,"  IEEE 

Trans. Comput.,  vol. C-33,  pp.774 -785 ,1984.  

[16]  P. Clermont and A. Merigot ,"Real time synchronization in a multi-

SIMD massively parallel machine,"  Proc. IEEE 1987 Workshop 

Pattern Anal. Machine Intell., pp.131 -136,1987.  

 [17] R. Cole ,"Parallel merge sort," Proc. 27th IEEE Symp. Foundations 

Comput. Sci.,  pp.511 -517 ,1986 . 


